StrictUnder
?class StrictUnder {
order: PreOrder
x: order.Element
y: order.Element
strict: NonEqual(x, y)
under: order.Under(x, y)
}
// NOTE No cycle.
// NOTE Can implement:
// - topological sort
class PartialOrder extends PreOrder {
@given x: Element, y: Element
antisymmetric(Under(x, y), Under(y, x)): Equal(x, y)
}
// TODO PartialOrder should be an argument
@develop PartialOrder {
// NOTE An alternative axiom for reflexive.
// The advantage of this axiom is that it is the reverse of antisymmetric
// - antisymmetric(Under(x, y), Under(y, x)): Equal(x, y)
// Thus in PartialOrder, to prove Equal is equal to prove two Under's.
// - Maybe easier to use.
// - Maybe other axiom with one argument can have similar alternative.
@given x: Element, y: Element
reflexive_alt(Equal(x, y)): (Under(x, y), Under(y, x))
reflexive_alt(equation) =
(transport(equation, (z: Element) => Under(x, z), reflexive(x)),
transport(Equal.swap(equation), (z: Element) => Under(y, z), reflexive(y)))
// NOTE From the reflexivity of Under,
// we derive the following laws,
// known as the laws of "indirect order".
indirect_order_under(
x: Element, y: Element,
(z: Element) -> Under(z, x) -> Under(z, y),
): Under(x, y)
indirect_order_under = indirect_under(x, reflexive(x))
indirect_order_above(
x: Element, y: Element,
(z: Element) -> Under(y, z) -> Under(x, z),
): Under(x, y)
indirect_order_above(x, y, indirect_above) = indirect_above(y, reflexive(y))
// TODO relation between PartialOrder and Lattice
// (z: Element) -> (Under(w, z) <-> (Under(x, z), Under(y, z)))
}
class Beneath {
order: PartialOrder
x: order.Element
y: order.Element
strict_under: PreOrder.StrictUnder(order, x, y)
nothing_in_between(
z: Element,
order.Under(x, z),
PreOrder.StrictUnder(z, y),
): Equal(Element, z, x)
}
StrictUnder
?class StrictUnder {
order: PreOrder
x: order.Element
y: order.Element
strict: NonEqual(x, y)
under: order.Under(x, y)
}
// NOTE No cycle.
// NOTE Can implement:
// - topological sort
class PartialOrder extends PreOrder {
@given x: Element, y: Element
antisymmetric(Under(x, y), Under(y, x)): Equal(x, y)
}
// TODO PartialOrder should be an argument
@develop PartialOrder {
// NOTE An alternative axiom for reflexive.
// The advantage of this axiom is that it is the reverse of antisymmetric
// - antisymmetric(Under(x, y), Under(y, x)): Equal(x, y)
// Thus in PartialOrder, to prove Equal is equal to prove two Under's.
// - Maybe easier to use.
// - Maybe other axiom with one argument can have similar alternative.
@given x: Element, y: Element
reflexive_alt(Equal(x, y)): (Under(x, y), Under(y, x))
reflexive_alt(equation) =
(transport(equation, (z: Element) => Under(x, z), reflexive(x)),
transport(Equal.swap(equation), (z: Element) => Under(y, z), reflexive(y)))
// NOTE From the reflexivity of Under,
// we derive the following laws,
// known as the laws of "indirect order".
indirect_order_under(
x: Element, y: Element,
(z: Element) -> Under(z, x) -> Under(z, y),
): Under(x, y)
indirect_order_under = indirect_under(x, reflexive(x))
indirect_order_above(
x: Element, y: Element,
(z: Element) -> Under(y, z) -> Under(x, z),
): Under(x, y)
indirect_order_above(x, y, indirect_above) = indirect_above(y, reflexive(y))
// TODO relation between PartialOrder and Lattice
// (z: Element) -> (Under(w, z) <-> (Under(x, z), Under(y, z)))
}
class Beneath {
order: PartialOrder
x: order.Element
y: order.Element
strict_under: PreOrder.StrictUnder(order, x, y)
nothing_in_between(
z: Element,
order.Under(x, z),
PreOrder.StrictUnder(z, y),
): Equal(Element, z, x)
}