Katex Code Block

To use Katex Code Block extensions, name a code block by katex.
What is the root formula of the following general quadratic equation?
ax2+bx+cax^2 + bx +cax2+bx+c
ax^2 + bx +c
The root formula is:
−b±b2−4ac2a-b \pm \sqrt{b^2 - 4ac} \over 2a2ab±b24ac
-b \pm \sqrt{b^2 - 4ac} \over 2a
COX2+C→2 CO\ce{CO2 + C -> 2 CO}COX2+C2CO
\ce{CO2 + C -> 2 CO}
HgX2+→IX−HgIX2→IX−[HgXIIIX4]X2−\ce{Hg^2+ ->[I-] HgI2 ->[I-] [Hg^{II}I4]^2-}HgX2+IXHgIX2IX[HgXIIIX4]X2
\ce{Hg^2+ ->[I-] HgI2 ->[I-] [Hg^{II}I4]^2-}
Cp[HX2O(l)]=75.3 Jmol KC_p[\ce{H2O(l)}] = \pu{75.3 J // mol K}Cp[HX2O(l)]=75.3 molKJ
C_p[\ce{H2O(l)}] = \pu{75.3 J // mol K}
ZnX2+⇌+2 HX++2 OHX−Zn(OH)X2↓amphoteres Hydroxid⇌+2 HX++2 OHX−[Zn(OH)X4]X2−Hydroxozikat\ce{ Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$ }ZnX2++2OHX+2HX+amphoteres HydroxidZn(OH)X2+2OHX+2HX+Hydroxozikat[Zn(OH)X4]X2
\ce{
  Zn^2+
  <=>[+ 2OH-][+ 2H+]
  $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$
  <=>[+ 2OH-][+ 2H+]
  $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$
}
K=[HgX2+][Hg][HgX2X2+]\ce{$K = \ce{\frac{[Hg^2+][Hg]}{[Hg2^2+]}}$}K=[HgX2X2+][HgX2+][Hg]
\ce{$K = \ce{\frac{[Hg^2+][Hg]}{[Hg2^2+]}}$}
HgX2+→IX−HgIX2red→IX−[HgXIIIX4]X2−red\ce{ Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$ }HgX2+IXredHgIX2IXred[HgXIIIX4]X2
\ce{
  Hg^2+ ->[I-]
  $\underset{\mathrm{red}}{\ce{HgI2}}$
  ->[I-]
  $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$
}
Please visit mhchem's manual from more examples.